Cholesky-GARCH models with applications to finance
نویسندگان
چکیده
Instantaneous dependence among several asset returns is the main reason for the computational and statistical complexities in working with full multivariate GARCH models. Using the Cholesky decomposition of the covariance matrix of such returns, we introduce a broad class of multivariate models where univariate GARCH models are used for variances of individual assets and parsimonious models for the time-varying unit lower triangular matrices. This approach, while reducing the number of parameters and severity of the positive-definiteness constraint, has several advantages compared to the traditional orthogonal and related GARCH models. Its major drawback is the potential need for an a priori ordering or grouping of the stocks in a portfolio, which through a case study we show can be taken advantage of so far as reducing the forecast error of the volatilities and the dimension of the parameter space are concerned. Moreover, the Cholesky decomposition, unlike its competitors, decompose the normal likelihood function as a product of univariate normal likelihoods with independent parameters, resulting in fast estimation algorithms. Gaussian maximum likelihood methods of estimation of the parameters are developed. The methodology is implemented for a real financial dataset with seven assets, and its forecasting power is compared with other existing models. P. Dellaportas ( ) Department of Statistics, Athens University of Economics and Business, Athens, Greece e-mail: [email protected] M. Pourahmadi Department of Statistics, Texas A&M University, College Station, TX, 77843, USA e-mail: [email protected]
منابع مشابه
Large Time-Varying Covariance Matrices with Applications to Finance
Correlations among the asset returns are the main reason for the computational and statistical complexities of the full multivariate GARCH models. We rely on the variancecorrelation separation strategy and introduce a broad class of multivariate models in the spirit of Engle’s (2002) dynamic conditional correlation models, that is univariate GARCH models are used for variances of individual ass...
متن کاملLarge Time-Varying Correlation Matrices with Applications to Finance
Correlations among the asset returns are the main reason for the computational and statistical complexities of the full multivariate GARCH models. We rely on the variancecorrelation separation strategy and introduce a broad class of multivariate models in the spirit of Engle’s (2002) dynamic conditional correlation models, that is univariate GARCH models are used for variances of individual ass...
متن کاملAnna Pajor
Multivariate models of asset returns are very important in financial applications. Asset allocation, risk assessment and construction of an optimal portfolio require estimates of the covariance matrix between the returns of assets (see e.g. Aguilar and West (2000), Pajor (2005a, 2005b)). Similarly, hedges require a covariance matrix of all the assets in the hedge. There are two main types of vo...
متن کاملOptimizing Stock Portfolio of Investment Companies Operating in Field of Petrochemical and Refinery Based on Multivariate GARCH Models
The main objective of this research is to optimize the stock portfolio of investment companies operating in the field of petrochemical and refining industries through minimizing risk with respect to the expected return. In this regard, first of all, the compositions of sample firm's portfolios were investigated during 2013 to 2016 and high-weight industries were selected. Then, the risk of retu...
متن کاملDoubly Stochastic Models with Threshold Garch Innovations
Recently, there has been a growing interest in the methods addressing volatility in computational finance and econometrics. Peiris et al. [8] have introduced doubly stochastic volatility models with GARCH innovations. Random coefficient autoregressive sequences are special case of doubly stochastic time series. In this paper, we consider some doubly stochastic stationary time series with GARCH ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Statistics and Computing
دوره 22 شماره
صفحات -
تاریخ انتشار 2012